The single-cell transcriptomic landscape of early human diabetic nephropathy
Diabetic nephropathy is characterized by damage to both the glomerulus and tubulointerstitium, but relatively little is known about accompanying cell-specific changes in gene expression. We performed unbiased single nucleus RNA sequencing (snRNAseq) on cryopreserved human diabetic kidney samples to generate 23,980 single nucleus transcriptomes from three control and three early diabetic nephropathy samples. All major cell types of the kidney were represented in the final dataset. Side by side comparison demonstrated cell-type-specific changes in gene expression that are important for ion transport, angiogenesis, and immune cell activation. In particular, we show that the diabetic thick ascending limb, late distal convoluted tubule, and principal cells all adopt a gene expression signature consistent with increased potassium secretion, including alterations in Na-K+-ATPase, WNK1, mineralocorticoid receptor and NEDD4L expression, as well as decreased paracellular calcium and magnesium reabsorption. We also identify strong angiogenic signatures in glomerular cell types, proximal convoluted tubule, distal convoluted tubule and principal cells. Taken together, these results suggest that increased potassium secretion and angiogenic signaling represent early kidney responses in human diabetic nephropathy.
To reference this project, please use the following link:
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
NoneProject Label
Diabetic Nephropathy snRNA-seqSpecies
Homo sapiens
Sample Type
specimens
Anatomical Entity
kidney
Organ Part
cortex
Selected Cell Types
Disease Status (Specimen)
Disease Status (Donor)
Development Stage
human adult stage
Library Construction Method
10x 5' v2
Nucleic Acid Source
single nucleus
Paired End
trueFile Format
Cell Count Estimate
30.0kDonor Count
6