Single-cell RNA sequencing of human femoral head in vivo
The homeostasis of bone metabolism depends on the coupling and precise regulation of various types of cells in bone tissue. However, the communication and interaction between bone tissue cells at the single-cell level remains poorly understood. Thus, we performed single-cell RNA sequencing (scRNA-seq) on the primary human femoral head tissue cells (FHTCs). Nine cell types were identified in 26,574 primary human (FHTCs), including granulocytes, T cells, monocytes, B cells, red blood cells, osteoblastic lineage cells, endothelial cells, endothelial progenitor cells (EPCs) and plasmacytoid dendritic cells. We identified serine protease 23 (PRSS23) and matrix remodeling associated protein 8 (MXRA8) as novel bone metabolism-related genes. Additionally, we found that several subtypes of monocytes, T cells and B cells were related to bone metabolism. Cell-cell communication analysis showed that collagen, chemokine, transforming growth factor and their ligands have significant roles in the crosstalks between FHTCs. In particular, EPCs communicated with osteoblastic lineage cells closely via the "COL2A1-ITGB1" pair. Collectively, this study provided an initial characterization of the cellular composition of the human FHTCs and the complex crosstalks between them at the single-cell level. It is a unique starting resource for in-depth insights into bone metabolism. Overall design: Applied scRNA-seq technology to characterize cellular heterogeneity at single-cell level in freshly isolated human femoral head tissue cells.
To reference this project, please use the following link:
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
NoneProject Label
femoralHeadScRnaSeqSpecies
Homo sapiens
Sample Type
specimens
Anatomical Entity
bone tissue
Organ Part
head of femur
Selected Cell Types
bone cell
Disease Status (Specimen)
Disease Status (Donor)
Development Stage
human adult stage
Library Construction Method
10x 3' v3
Nucleic Acid Source
single cell
Paired End
falseAnalysis Protocol
analysis_protocol_1File Format
Cell Count Estimate
26.6kDonor Count
4