Single cell and lineage tracing studies reveal the impact of CD34+ cells on myocardial fibrosis during heart failure
Background: CD34+ cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy. Methods We performed single-cell RNA sequencing (scRNA-seq) of the total non-cardiomyocytes and enriched Cd34-tdTomato+ lineage cells in the murine (male Cd34-CreERT2; Rosa26-tdTomato mice) pressure overload model (transverse aortic constriction, TAC), and total non-cardiomyocytes from human adult hearts. Then, in order to determine the origin of CD34+ cell that plays a role in myocardial fibrosis, bone marrow transplantation model was performed. Furthermore, to further clarify the role of +cells in myocardial remodeling in response to TAC injury, we generated Cd34-CreERT2; Rosa26-eGFP-DTA (Cre/DTA) mice. Results: By analyzing the transcriptomes of 59,505 single cells from the mouse heart and 22,537 single cells from the human heart, we illustrated the dynamics of cell landscape during the progression of heart hypertrophy, including CD34+ cells, fibroblasts, endothelial and immune cells. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone-marrow-derived CD34+ cells give rise to fibroblasts and endothelial cells, while bone-marrow-derived CD34+ cell turned into immune cells only in response to pressure overload. Interestingly, partial depletion of CD34+ cells alleviated the severity of myocardial fibrosis with a significant improvement of cardiac function in Cd34-CreERT2; Rosa26-eGFP-DTA model. Similar changes of non-cardiomyocyte composition and cellular heterogeneity of heart failure were also observed in human patient with heart failure. Furthermore, immunostaining showed a double labeling of CD34 and fibroblast markers in human heart tissue. Mechanistically, our single-cell pseudotime analysis of scRNA-seq data and in vitro cell culture study revealed that Wnt-β-catenin and TGFβ1/Smad pathways are critical in regulating CD34+ cell differentiation toward fibroblasts. Conclusions: Our study provides a cellular landscape of CD34+ cell-derived cells in the hypertrophy heart of human and animal models, indicating that non-bone-marrow-derived CD34+ cells differentiating into fibroblasts largely account for cardiac fibrosis. These findings may provide novel insights for the pathogenesis of cardiac fibrosis and have further potential therapeutic implications for the heart failure.
To reference this project, please use the following link:
Supplementary links are provided by contributors and represent items such as additional data which can’t be hosted here; code that was used to analyze this data; or tools and visualizations associated with this specific dataset.
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
NoneProject Label
CD34LineageMyocardialDuSpecies
Sample Type
specimens
Anatomical Entity
heart
Organ Part
heart left ventricle
Selected Cell Types
Unspecified
Disease Status (Specimen)
Disease Status (Donor)
Development Stage
Library Construction Method
10x 3' v3
Nucleic Acid Source
single cell
Paired End
falseAnalysis Protocol
cellranger_v3, cellranger_v5File Format
Cell Count Estimate
82.0kDonor Count
21