A spatially resolved atlas of the human lung characterizes a gland-associated immune niche
Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.
A spatially resolved atlas of the human lung characterizes a gland-associated immune niche (Official HCA Publication)
To reference this project, please use the following link:
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas


Analysis Portals

Project Label
AdultLungEloSpecies
Homo sapiens
Sample Type
specimens
Anatomical Entity
lung
Organ Part
Selected Cell Types
bone marrow hematopoietic cell
Disease Status (Specimen)
normal
Disease Status (Donor)
Development Stage
human adult stage
Library Construction Method
Nucleic Acid Source
Paired End
falseAnalysis Protocol
analysisprotocolFile Format
Cell Count Estimate
193.1kDonor Count
13