Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis
Pulmonary fibrosis (PF) is a form of chronic lung disease characterized by progressive destruction of normal alveolar gas-exchange surfaces and accumulation of extracellular matrix (ECM). In order to comprehensively define the cell types, mechanisms and mediators driving ECM deposition and fibrotic remodeling in lungs with pulmonary fibrosis, we performed single-cell RNA-sequencing (scRNA-seq) of single-cell suspensions generated from non-fibrotic control and PF lungs. Analysis of over 114,000 cells from 20 PF and 10 control lungs identified 31 distinct cell types. We identified multiple distinct lineages directly contribute to ECM expansion, including a novel HAS1hi fibroblast subtype and a previously undescribed KRT5-/KRT17+, collagen and ECM-producing epithelial cell population that was highly enriched in PF lungs. Together these data provide high-resolution insights into the basic mechanisms of pulmonary fibrosis, and indicate a direct profibrotic role of the lung epithelium in PF pathogenesis. Overall design: We performed single-cell RNA-sequencing (scRNA-seq) of single-cell suspensions generated from non-fibrotic control and pulmonary fibrosis (PF) lungs
To reference this project, please use the following link:
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas

Analysis Portals
Project Label
PulmonaryFibrosisGSE135893Species
Homo sapiens
Sample Type
specimens
Anatomical Entity
lung
Organ Part
Unspecified
Selected Cell Types
Unspecified
Disease Status (Specimen)
Disease Status (Donor)
Development Stage
human adult stage
Library Construction Method
Nucleic Acid Source
single cell
Paired End
falseAnalysis Protocol
optimus_post_processing_v1.0.0, optimus_v4.2.2File Format
Cell Count Estimate
114.4kDonor Count
30