The Dynamic Transcriptional Cell Atlas of Testis Development During Human Puberty
The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of ∼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.
To reference this project, please use the following link:
Supplementary links are provided by contributors and represent items such as additional data which can’t be hosted here; code that was used to analyze this data; or tools and visualizations associated with this specific dataset.
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
NoneProject Label
TestisCellAtlasSpecies
Homo sapiens
Sample Type
specimens
Anatomical Entity
testis
Organ Part
Unspecified
Selected Cell Types
Unspecified
Disease Status (Specimen)
normal
Disease Status (Donor)
normal
Development Stage
Library Construction Method
10x 3' v2
Nucleic Acid Source
single cell
Paired End
falseAnalysis Protocol
raw_matrix_generationFile Format
Cell Count Estimate
41.6kDonor Count
6